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Abstract. In the first part of this work (Bonilla L L, Kochelap V A and Velasco C A 1999J. Phys.:
Condens. Matter116395) we formulated and analysed a model of transverse self-sustained pattern
formation in a photoexcited and voltage-biased quantum well (QW) structure. Our model explained
the formation of patterns of quasi-neutral two-dimensional electron–hole plasma whose intrinsic
bistability was shown in recent experiments. We found patterns containing regions with different
spreading of the electron and hole wave functions and different densities of the two-dimensional
electron–hole plasma.

In this second part we extend our results to QWs with finite transverse dimension. We will
show that the boundary conditions at the edges of the QW layer control the behaviour of the patterns.
We will study the stability of the patterns and will show its strong dependence on the boundary
conditions. A linear stability criterion for these patterns is presented and compared with numerical
simulations.

1. Patterns in quantum wells with finite transverse dimensions

The goal of this part of the work is to discuss the formation of patterns under bistable electro-
optical absorption in quantum well (QW) layers of finite transverse dimensions. The details
of the model under consideration are given in sections 1 and 2 of the first part of this work [1].
For the sake of completeness, we will briefly review in this section the basic details of our
approach.

Our model explains the appearance of quasi-neutral plasma domains in a photoexcited and
voltage-biased QW [1–4]. The geometry of the problem consists of a single GaAs QW of width
2d subject to a constant electric field due to uniformly distributed charges of a parallel-plate
capacitor. The distance between the capacitor plates is 2dc, such thatd � dc, and the field
is parallel to the direction of vertical growth of the sample. Furthermore, a monochromatic
photon source photoexcites the QW (see figure 1 in [1]).

The approach is based upon the consideration of the widely separated characteristic length
scales which are involved in the problem. As detailed in reference [1], we considered in
our problem the Schrödinger–Poisson system and the drift–diffusion equations, which we
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solved to the leading-order approximation. The resulting second-order equation for the plasma
concentration has the expression

∂n

∂τ
− ∂

∂ξ

{
D(n, q)

∂n

∂ξ

}
= a(n, q, ω)i − n ≡ R(n, q, ω, i) (1)

where all the variables are dimensionless:n is the 2D plasma concentration,τ represents time,
ξ is the transverse coordinate,q is the external electric field,D is a ‘diffusion-like’ coefficient,
a function of the plasma concentrationn and the electric fieldq, anda is the absorption factor.
We have assumed that the patterns depend on only one of the transverse coordinates,ξ . D has
the following expression:

D(n, q) ≡ α(n) + n
∂ε(n, q)

∂n
(2)

whereα(n) is found through the Einstein relation, andε is the lowest two-dimensional subband
energy. At the edges of the QW layer we impose these boundary conditions:

jn = −D(n, q)∂n
∂ξ
= ±s(±)n (3)

wheres is the dimensionless edge recombination rate, and the signs± correspond to the right
and left edges of the QW layer, respectively.

1.1. Stationary states: phase portrait analysis

In section 3 of reference [1], we studied in detail the phase portraits for the stationary solutions
of equation (1). Due to the intrinsic bistability of the right-hand side of (1), there are three
critical values of the intensityi, il , ik, andih, with different phase portraits. In any case, there
are three singular points, which we will denote asn∗ = n1, n2, n3. It was shown thatn1 and
n3 are saddle points, and thatn2 is a centre.

Figure 1 shows these three typical cases. The critical valueik, found through equation
(43) of [1], divides the interval [il, ih] (on whichn(i) is multivalued) into two subintervals,
[il, ik) and(ik, ih]. On each subinterval the phase portrait is similar: one of the saddles has
a homoclinic orbit enclosing the centre. Wheni ∈ (il, ik), the homoclinic orbit belongs to
(n3, 0) as shown in figure 1(a), whereas it belongs to(n1, 0)wheni ∈ (ik, ih) (see figure 1(c)).
The phase portrait fori = ik is shown in figure 1(b).

Let us consider now the case when the transverse extent of the QW layer is finite,L <∞,
and the boundary conditions are given by (3). As an example, the boundary curves (3) are
marked on the phase plane of figure 1 for several recombination rates. Admissible stationary
solutions are trajectories which start on a boundary curve on the positive side of thek-axis and
end on a curve on the negative side of the same axis after a ‘time of flight’L:∫ n(+)

n(−)

dn

nξ (n)
= L (4)

where(n, nξ ) (nξ = dn/dξ ) is an orbit of equation (41) of reference [1] given by an appropriate
value ofC1 andn(±) ≡ n(± 1

2L). Let us now consider a few particular cases.
First of all, assume that there is no edge recombination (s± = 0). Then the boundary

curves coincide with then-axis. We conclude that all three uniform solutions,n1, n2, and
n3, satisfy the boundary conditions, but no open trajectories do. A certain numberQ of half-
periods of a close trajectory may constitute an eligible solution of the stationary boundary
value problem. The spatial periodξp(C1) is a monotonic function ofC1 having a minimum at
C1 = U(n2) (small-amplitude oscillations aroundn2; see equation (40) of reference [1]).
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Figure 1. Phase portraits foril < i < ik (a), i = ik (b), andik < i < ih (c). The solid curves
are the separatrices; no other trajectories are portrayed. Diamonds represent the singular points
(n1, 0), (n2, 0), and(n3, 0). Dotted curves represent an example of typical symmetric boundary
conditions fors± = 0.5 ands± = 1. Dashed curves represent the region of the phase plane where
we haveA0-type boundary conditions;A−-type boundary conditions apply inside that curve plus
then-axis;A+-type boundary conditions apply outside of that curve.

WhenC1 → 0 (for i ∈ [il, ik)), or C1 → U(n3) (for i ∈ (ik, ih]), the period becomes
infinite. Admissible trajectories correspond toQ half-periods of a closed orbit with a value of
the first integralC1 such that

L = 1

2
Qξp(C1). (5)

WhenL < 1
2 minξp, no suitable trajectories and therefore no nonuniform patterns exist.

After L > 1
2 minξp, two patterns appear (their amplitude is small ifL ∼ ξp/2 and it increases

with L; each pattern is transformed into the other by the changeξ → −ξ ). These patterns
may be called ‘half-period’ patterns. AsL � minξp, the width of the nonuniform region in
these patterns increases. Fori ∈ [il, ik), the patterns each consist of a plateau withn = n3

which extends almost throughout the sample starting from one of the edges plus a narrow
carrier-depleted domain near the other edge (figures 2(a), 2(b)). Fori = ik the patterns may
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Figure 2. The simplest patterns fori ∈ [il , ik) andL > minξp assuming no edge recombination
(s± = 0). (a) and (b) correspond to ‘half-period’ solutions; (c) and (d) correspond to ‘full-period’
solutions.

consist of regions of low and high plasma concentration spatially separated by a kink-like
transition. Fori ∈ (ik, ih], there are extended plateaus of low-concentration plasma and a
narrow high-concentration domain near the edge. WhenL > minξp, two new solutions
of equation (5) arise. They correspond to ‘full-period’ patterns symmetric with respect to
ξ →−ξ . If i ∈ [il, ik), for example, one pattern consists of a plateau withn = n3 limiting the
domains of depleted electron density at both edges (figures 2(c), 2(d)). Ifi = ik the patterns
consist of three plateaus (n3−n1−n3, orn1−n3−n1) separated by proper kink-like transitions.
Similar considerations allow us to construct easily the patterns for any other cases.

Let us now consider the case of finite edge recombination, which we analyse for the
example of figure 1(a) withi ∈ (il, ik]. This figure shows that uniform patterns are no longer
admissible solutions of the boundary value stationary problem. Although patterns with low
plasma concentration exist for any recombination velocitys±, occurrence of patterns with high
plasma concentration depends strongly ons±. Whens± is small, patterns similar to all those
discussed above fors± = 0 do exist. (We should add appropriate boundary layers near the
edges to the patterns of figure 2.) Now letsc(i) be the edge recombination velocity for which
the boundary curve is tangent to the homoclinic orbit in figure 1(a) at a point(nc, nξ (nc)). It
is easily found that

sc(i) = 1

nc

√
2[U(n3, i)− U(nc, i)]

U(n3, i)− U(nc, i) +
nc

2
R(nc)D(nc) = 0.

(6)

Then, if either ofs+, s− exceedssc(i), no trajectories reaching the high-concentration state
satisfy the boundary conditions. Thus no patterns with high-plasma-concentration regions
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(either plateaus or narrow domains) exist: there are only simple low-plasma-concentration
patterns. Similar conclusions can be reached ifi = ik. When i ∈ (ik, ih], some open
trajectories are admissible stationary solutions in addition to patterns similar to those previously
discussed. As a result, even fors± → ∞, these open trajectories provide plateau-like and
domain-like patterns with high plasma concentrations (see figure 3).

Figure 3. Typical stationary patterns in the rangeik < i < ih for infinite recombination rates at
the edges of the QW layer. Curves (1) and (3) represent stable ‘plateau-like’ solutions, whereas
curve (2) represents an unstable ‘domain-like’ solution.

The patterns in figure 2 and figure 3 correspond to symmetric boundary conditionss+ = s−.
Trivial modifications of the above considerations allow us to understand how nonsymmetric
conditions transform the patterns or even cancel some of them.

2. Stability of a transversely finite QW

In this section we shall characterize the previously constructed transverse patterns in a finite QW
according to their linear stability. A general theorem, proven in reference [5], can be used to
ascertain the stability of a transverse pattern given its shape and the type of boundary conditions
which hold at the edges. This result is summarized in the appendix. The stability analysis
of the patterns on a transversely infinite QW can be done in a similar way to other ‘infinite
patterns’ found in the literature. This analysis shows that ‘kink-like’ structures (corresponding
to heteroclinic orbits on the phase plane) are stable, whereas the ‘domain-like’ structures
(corresponding to homoclinic orbits on the phase plane) are unstable. Let us consider a QW
layer whose transverse dimension has a finite extentL (left boundary atξ = −L/2 and right
boundary atξ = L/2). It is obvious that the stability of a pattern depends on the boundary
conditions at the edges of the layer.
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2.1. Classification of the boundary conditions

Following the method outlined in the appendix, we define the following functions (k ≡ dn/dξ ):

B0,1 ≡ D(n) k ± s±n = 0 (7)

where 0 (1) corresponds toξ = −L/2 (ξ = L/2). Let us denote byN a solution of the
stationary version of equation (1). Then, we find

a0(N) ≡ B0p = D(n) at n(−L/2) (8)

a1(N) ≡ B1p = D(n) at n(L/2) (9)

b0(N) ≡ B0n = D′(n) k − s− at n(−L/2) nξ (−L/2) = k(−L/2) (10)

b1(N) ≡ B1n = D′(n) k + s+ at n(L/2) nξ (L/2) = k(L/2). (11)

As the diffusion coefficientD(n) is strictly positive forn > 0, the boundary conditions
have the following properties:

nξ (±L/2) 6= 0 if s± 6= 0

nξ (±L/2) = 0 otherwise.

Reference [5] (see the appendix) classifies boundary conditions into three types,A−, A0, and
A+, according to the sign of an auxiliary function50,1 at each transverse edge of the QW. We
compare (at the edges) the slopes of two curves in the phase plane(n, k): the curve defined by
the boundary condition and the curvek(n) corresponding to the stationary transverse pattern
itself. When the boundary curve is above, tangent to, or below the solution curve, we say that
the boundary condition is of typeA+,A0, orA−, respectively. See figure 4 for an example. The
auxiliary functions5i , i = 0, 1, provide an analytical characterization of the type of boundary
condition. A complete characterization of the linear stability of a steady state according to its
shape and the type of boundary condition at the edges was obtained in reference [5].

(a) s− = 0, and/or s+ = 0. In this case,nξ (±L/2) = 0, and therefore theboundary
conditions are of typeA−.

(a) (b) (c)

B.C.

B.C. B.C.

Figure 4. Three examples of boundary conditions of the same type at both edges. The boundary
curve is the same straight line at both transverse edges, which lies (a) above (typeA+), (b) tangent
to (typeA0), and (c) below the solution curve (typeA−). The arrows on the solution curves mark
the direction fromx = 0 tox = L.
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(b) s± 6= 0. Here we define the following terms (nξ (−L/2) > 0 andnξ (L/2) < 0):

50 ≡ −D[n(−L/2)]nξ (−L/2){D[n(−L/2)]nξξ (−L/2)
+ [D′[n(−L/2)]nξ (−L/2)− s−]nξ (−L/2)}
= D[n(−L/2)]nξ (−L/2){R[n(−L/2)] + s−nξ (−L/2)} (12)

51 ≡ D[n(L/2)]nξ (L/2){D[n(L/2)]nξξ (L/2)

+ [D′[n(L/2)]nξ (L/2) + s+]nξ (L/2)}
= − D[n(L/2)]nξ (L/2){R[n(L/2)] − s+nξ (L/2)} (13)

where we have used the equalityR(n) = −{D′(n)n2
ξ + D(n)nξξ }. Both terms may be

rewritten as follows:

50,1 = D[n(±L/2)]|nξ (±L/2)|
{
R[n(±L/2)] + D[n(±L/2)] n

2
ξ (±L/2)
n(±L/2)

}
. (14)

By using (14), we can now determine the regions in space where we haveA−-, A0-, or
A+-type boundary conditions. When

R(n) +D(n)
n2
ξ

n
= 0 (15)

we haveA0-type ones, i.e. the region forA− is the region enclosed between the curves:

k(n) ≡ nξ = ±
√
−R(n)n
D(n)

n1 < n < n2 (16)

and the axisk = 0. Notice that the axisk = 0 itself is of typeA− as well.n1 < n < n2 is
the region whereR(n) < 0. These regions are plotted in the phase portraits of figure 1.

2.2. Discussion of stability results

Once the types of the boundary conditions are established, the stability of a given pattern can
be determined by finding the sign of the largest eigenvalue (λ1) of the linearized problem (see
the appendix). Letχ , X, andY be the number of critical points of the stationary solution in
the interval(−L/2, L/2), and the type of the left and right boundary conditions, respectively.
We have obtained the following results:

(a) Symmetric patterns.Under this heading we include cases with no edge recombination
(s± = 0), or with nonvanishing edge recombination (s± 6= 0). The first ones are like
those of figure 2, and the latter are depicted in figure 3 fors± = ∞.

1. No edge recombination. For this caseX = Y = A−, andχ = 1 or χ = 0. Then,
according to case 3 of the theorem stated in the appendix,λ1 > 0, and therefore, the
solutions areunstable.

2. Infinite edge recombination. For this caseX = Y = A+, andχ = 1. Then, according
to case 4 of the theorem stated in the appendix,

sgn(λ1) = −sgn(nξ (−L/2)Lµ) = −sgn(Lµ).
Since we have Dirichlet’s boundary conditions,Lµ is defined as

Lµ = ∂L

∂nξ (−L/2) .
Figure 5 plots the bifurcation diagram for curves similar to (1), (2), and (3) of
figure 3. Notice that curves of types (1) and (3) (low- and high-concentration plateaus,
respectively) arestable, whereas domain-like curves (2) areunstable.
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Figure 5. Bifurcation diagrams in the rangeik < i < ih for infinite recombination rate at the
edges of the QW layer. (a) corresponds to 0< k < kc (curve (1) of figure 3), and (b) corresponds
to kc < k (curves (2), (3) of figure 3). Atk = kc > 0, the separatrix entering the saddle(n1, 0)
from the left intersects thek-axis. Positive slope in the bifurcation diagram implies linear stability
of the corresponding pattern.

3. Finite edge recombination. The analysis is equivalent to the previous case, but the
definition ofLµ changes to

Lµ = ∂L

∂n(−L/2) .
However, the bifurcation diagram is quite similar to that of figure 5.

(b) Asymmetric patterns.This paragraph covers a whole variety of cases. As an example,
we will consider only asymmetric patterns similar to curves (1), (2), and (3) of figure 3,
selecting only half of them. Then we obtain:

1. X = A+, Y = A− (s− = ∞ ands+ = 0), andχ = 0. We apply case (d) of the
theorem stated in the appendix, which coincides with case 2 of the previous paragraph.
Those results are thus extensible to this case.

2. X = A−, Y = A+ (s− = 0 ands+ = ∞), andχ = 0. Here we apply case (e) of the
theorem stated in the appendix. This implies that

sgn(λ1) = sgn(nξ (L/2)Lµ) = −sgn(Lµ).
AndLµ is defined as in case 3 of the previous paragraph, and the results are applicable
here.
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Notice how a simple method like the one stated in the appendix, together with the help of
the phase portraits of figure 1, can give us an immediate result about the stability of the patterns.
In general terms, it can be said that the recombination rate has a stabilizing effect. However,
when i ∈ (il, ik), a high recombination rate cancels many possible patterns. The stability
results were checked by studying the dynamics of (1) with a standard moving-grid numerical
method to integrate parabolic differential equations [6]. We started by choosing an appropriate
initial density profile and then observing its evolution towards a stable pattern (whose stability
had been established by using the previous criteria). For the first case (figure 3, curve (1)), we
chosen(ξ, 0) as a parabola whose maximum was smaller thann1. This profile evolved towards
our first solution (see figure 6(a)). Any small disturbance of the final state would lead again
to that solution. As regards the pattern with the high plateau (figure 3, curve (3)), we chose as
initial profile a parabola with a maximum larger than the maximum of the second (unstable)
stationary solution (see figure 3, curve (2)). The initial profile evolved towards the third

Figure 6. Evolution towards a stable stationary solution (solid curve) in the QW layer from an
initial profile. Dotted curves are profiles at intermediate times. (a) corresponds to curve (1) and
(b) corresponds to curve (3) of figure 3.
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stationary solution (see figure 6(b)). However, in the intermediate case (figure 3, curve (2)),
when we analysed a small disturbance of the stationary solution (step-like or sinusoidal), the
system departed rapidly from the unstable pattern (see figure 7).

Figure 7. As figure 6, but starting from an initial profile very close to an unstable stationary solution
(curve (2) in figure 3) in the QW layer.

3. Discussion

We shall present an overall discussion of the results of parts I and II of this work. We
have formulated and analysed a model of pattern formation in a QW heterostructure under
bistable electro-optical absorption. The model includes: self-consistent calculations of the
wave functions and subband energies of the photoexcited electrons and holes in an strongly
biased QW, nonlinear interband light absorption, the configuration of the electrostatic potential,
its screening, and the transverse motion of the two-dimensional electron–hole plasma. The
quantized vertical motion and the semiclassical transverse motion of the carriers arestrongly
coupleddue to the electrostatic interaction. The transverse redistribution of the carriers induces
the electrostatic mean-field potential, and adiabatically drives the electron and hole wave
functions, and the subband energies. In the numerical calculations we used values taken from
experiments [2–4], and the literature. Thus our maximum concentrations are in the range of
those measured in the experiments, 3–5×1011cm−2, for a typical electric fieldE ∼ 60 kV cm−1.

The analysis of this model has shown that a variety of stationary patterns are possible. The
characteristic scale of the transverse plasma redistribution is the ambipolar diffusion length
LD. When the transverse dimension is very large, the patterns consist of extended plateaus
with high (low) plasma concentration and layers of low (high) plasma concentration outside
the plateaus. The electron and hole wave functions are redistributed within the QW layer, i.e.,
they vary on the well thickness scaled. At some specific intensity, the plateaus with low and
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high plasma density can coexist. They are separated by a kink-like transient region whose
width is also of the order ofLD.

For a QW layer of finite transverse extent, some possible patterns are selected by the
transverse dimensions of the layer and the boundary conditions at the edges. A large electron–
hole recombination at the edges diminishes the number of possible patterns, and may cancel
the bistable or multistable behaviour of the patterns for a whole range of external parameters.
Notice that different patterns in the QW layer induce different potential distributions outside
this layer, as shown in figure 6 of reference [1] for the example of the antisoliton solution of
figure 4(a) of the same paper.

As expected, the stability of the patterns depends strongly on the boundary conditions.
From our results, it can be concluded that the recombination rate has a stabilizing effect on the
patterns, with the already mentioned effect of cancellation of patterns in some range of light
intensities (i ∈ (il, ik)).

An interesting phenomenon was found in the analysis of QWs with finite transverse
dimensions when applyingasymmetric boundary conditionsto the layer. These conditions
induce a transverse voltage drop which can be calculated with equation (26) of reference [1].
This voltage drop arises due to pattern formation despite the assumed uniform illumination of
the QW layer. We can give a numerical estimate for this induced drop in the QW layer when
the boundary conditions are strongly asymmetric (s− = 0, s+ � 1). When the transverse
dimension of the layer is large (L � LD), three patterns analogous to those of figure 3 may
be realized:

(a) a plateaun = n1 starting from the ‘−’ edge and changing to an accumulation layer near
the ‘+’ edge;

(b) a high-density layern > n2 near the ‘−’ edge which changes to a plateaun = n1 occupying
most of the transverse extent of the QW, and then changes to a depletion layer at the ‘+’
edge;

(c) the plateaun = n3 which is transformed into a depletion layer at the ‘+’ edge.

For these patterns we obtain an induced transverse voltage drop (L = 15): |Vpl| =
(1/e)E0(φ(n

+) − φ(n−)) = 4.7 mV, 11.7 mV, 17.4 mV, respectively. Notice that the total
transverse voltage drop is not small in spite of the smallness of the induced transverse electric
fields. In the examples studied, the vertical voltage drop across the QW is1V = 2dqE0 =
112 mV, and the maximum transverse drop for the given dimension reaches 15% of the drop
across the well. This supports our previous statement about the strong coupling between
vertical and transverse effects in these systems.

We conclude by remarking that formation of patterns similar to those described in this
work can be found in other cases of reported bistable electro-optical effects in quantum
heterostructures [7–13], to which our approach could be extended.
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Appendix. Stability criteria

Reference [5] states and proves a simple geometric criterion on the linear stability of stationary
solutions of nonlinear second-order parabolic equations on a finite segment. For the sake of
completeness, we will summarize this approach in the rest of the appendix. We begin with a
generic parabolic operator:

f (u, ux, uxx, ut ) = 0 in 0< x < L, t > 0 (A.1)

B0(u, ux) = 0 atx = 0

B1(u, ux) = 0 atx = L (A.2)

wheref , B0, andB1 are C1 functions such thatfq(u, p, q, r) > 1, fr(u, p, q, r) < −1
wheneverf (u, p, q, r) = 0 (i.e., equation (A.1) is uniformly parabolic), and, fori = 0, 1,
Biu(u, p)

2+Bip(u, p)2 6= 0 wheneverBi(u, p) = 0 (i.e., the boundary conditions (A.2) define
simple curves in the phase plane of (A.1) withut = 0).

Linear stability properties of a stationary solution of equations (A.1) and (A.2),U , are
defined in terms of the sign of the largest eigenvalue,λ1, of the linearized problem:

L(U)v = λv in 0< x < L

Bi (U)v = 0 atx = iL, for i = 0, 1
(A.3)

where the operatorsL(U), B0(U), andB1(U) are defined as

L(U)v ≡ φ(x)v′′ + ϕ(x)v′ +ψ(x)v
Bi (U)v ≡ ai(U)v′ + bi(U)v

(A.4)

where for x ∈ (0, L), φ(x) = −fq/fr , ϕ(x) = −fp/fr , and ψ(x) = −fu/fr , at
(u, p, q, r) = (U(x), Ux(x), Uxx(x), 0), and fori = 0, 1,

ai(U) = Bip bi(U) = Biu at (u, p) = (U(iL), Ux(iL)). (A.5)

As is well known, the eigenvalues of (A.3) are real, and the eigenfunctions associated
with λ1 do not vanish in 0< x < L. The stationary solutionU is linearly exponentially stable
(linearly stable or unstable) ifλ1 < 0 (λ1 6 0 orλ1 > 0).

Reference [5] classifies the boundary conditions (A.2) into three types,A−, A0, or A+,
according to whether the boundary curve is below, tangent to, or above the solution curve
in the (u, ux) phase plane; see figure 4. The slopes of the boundary and solution curves are
−ai(U)/bi(U) andUxx/Ux , respectively. Then it can be shown that the type of boundary
condition depends on the sign of

6 ≡ (−1)i+1ai(U)Ux(iL) [ai(U)Uxx(iL) + bi(U)Ux(iL)] (A.6)

if ai(U) 6= 0 andUx(iL) 6= 0.
When

6


< 0
= 0
> 0


the boundary condition (A.2) atx = iL is of type

A−

A0

A+


with respect to the stationary solutionU . If ai(U) = 0 andUx(iL) = 0 (6=0), then the
boundary condition (A.2) atx = iL is of typeA0 (A+). Finally, if ai(U) 6= 0 andUx(iL) = 0,
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the boundary condition (A.2) atx = iL is of typeA−. We see that a pure Neumann boundary
condition is of typeA−. On the other hand, a pure Dirichlet boundary condition is usually of
typeA+, unlessUx happens to be zero, in which case it is of typeA0.

With this classification in mind, reference [5] states the following:

Theorem. Under the above assumptions, letU be a stationary solution of (A.1) and (A.2),
let λ1 be the largest eigenvalue of the linearized problem (A.3), letn be the number of critical
points ofU in the interval(0, L), and letX andY (=A−,A0, orA+) be the type of the boundary
conditions (A.2), atx = 0 andx = L respectively, with respect toU . Then,

(a) λ1 < 0 if n = 0 and either{
(i) X = A+ andY = A0 or A+ or
(ii ) X = A0 or A+ andY = A+.

(b) λ1 = 0 if n = 0 andX = Y = A0.
(c) λ1 > 0 if either

(i) n > 2 or
(ii ) n = 1 and eitherX or Y is equal toA− or A0 or
(iii ) n = 0, X = A− andY = A− or A0 or
(iv) n = 0, X = A− or A0 andY = A−.

(d) sgn(λ1) = −sgn(Ux(0)Lµ), if either{
(i) n = 1 andX = Y = A+ or
(ii ) n = 0, X = A+ andY = A−.

(e) sgn(λ1) = sgn(Ux(L)Lµ), if n = 0,X = A− andY = A+.

Here sgn(x) = x/|x|, if x 6= 0, and sgn(0) = 0.
The parameterLµ may be defined in two ways which are equivalent to the following easily

visualized construction:

(a) a0[U(0)] 6= 0. We plot a bifurcation diagram ofu(0) versus the segment lengthL
(bifurcation parameter). Then we defineLµ = ∂L/∂u(0) calculated at the actual sample
length.

(b) a0[U(0)] = 0. We plot a bifurcation diagram ofux(0) against the segment lengthL
(bifurcation parameter). Then we defineLµ = ∂L/∂ux(0) calculated at the actual sample
length. This is the case for typical Dirichlet boundary conditions.
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